ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Ослепление

Один разок можно прочесть >>>>>

Украденная ночь

В сравнении с двумя предыдущими, эта супер интересная. Прочитала на одном дыхании >>>>>

Королевство грез

Роман просто волшебный! >>>>>

В сетях соблазна

Хорошая сказка, с адекватными героями. Концовка немного быстрая >>>>>




  109  

Символика Виета позволила и решать конкретные задачи, и находить общие закономерности, полностью обосновывая их. Таким образом, алгебра выделались в самостоятельную ветвь математики, не зависящую от геометрии. «Это нововведение и особенно применение буквенных коэффициентов положило начало коренному перелому в развитии алгебры: только теперь стало возможным алгебраическое исчисление как система формул, как оперативный алгоритм».

Символики Виета придерживался впоследствии Пьер Ферма. Дальнейшее значительное усовершенствование алгебраической символики принадлежит Декарту. Рене Декарт ввел для обозначения коэффициентов строчные буквы латинского алфавита. Для обозначения неизвестных он использовал последние буквы того же алфавита. Это нововведение получило широкое распространение в работах математиков и с небольшими изменениями сохранилось до наших дней.

ЛОГАРИФМЫ

На всем протяжении XVI века быстро возрастало количество приближенных вычислений, прежде всего в астрономии. Исследование планетных движений требовало колоссальных расчетов. Астрономы просто могли утонуть в невыполнимых расчетах. Очевидные трудности возникали и в других областях, таких как финансовое и страховое дело. Основную трудность представляли умножение и деление многозначных чисел, особенно же тригонометрических величин.

Иногда для приведения умножения к более легкому сложению и вычитанию пользовались таблицами синусов и косинусов. Была также составлена таблица квадратов до 100 000, с помощью которой умножение можно было производить по определенному правилу.

Однако эти приемы не давали удовлетворительного решения вопроса. Его принесли с собой таблицы логарифмов.

«Открытие логарифмов опиралось на хорошо известные к концу XVI века свойства прогрессий, — пишут М.В. Чириков и А.П. Юшкевич. — Связь между членами геометрической профессии и арифметической прогрессией не раз отмечалась математиками, о ней говорилось еще в „Псаммите“ Архимеда. Другой предпосылкой было распространение понятия степени на отрицательные и дробные показатели, позволившее перенести только что упомянутую связь на более общий случай…

Многие… авторы указывали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической — в том же порядке — сложение, вычитание, умножение и деление. Здесь уже скрывалась идея логарифма числа как показателя степени, в которую нужно возвести данное основание, чтобы получить это число. Оставалось перенести знакомые свойства прогрессии с общим членом на любые действительные показатели. Это дало бы непрерывную показательную функцию, принимающую любые положительные значения, а также обратную ей логарифмическую. Но эту идею глубокого принципиального значения удалось развить через несколько десятков лет».

Логарифмы изобрели независимо друг от друга Непером и Бюрги лет на десять позднее. Их цель была одна — желание дать новое удобное средство арифметических вычислений. Подход же оказался разный. Непер кинематически выразил логарифмическую функцию, что позволило ему по существу вступить в почти неизведанную область теории функций. Бюрги остался на почве рассмотрения дискретных прогрессий. Надо заметить, что у обоих определение логарифма не походило на современное.

Первый изобретатель логарифмов — шотландский барон Джон Непер (1550–1617) получил образование на родине в Эдинбурге. Затем после путешествия по Германии, Франции и Испании, в возрасте двадцати одного года, он навсегда поселился в семейном поместье близ Эдинбурга. Непер занялся главным образом богословием и математикой, которую изучал по сочинениям Евклида, Архимеда, Региомонтана, Коперника.

«К открытию логарифмов, — отмечают Чириков и Юшкевич, — Непер пришел не позднее 1594 года, но лишь двадцать лет спустя опубликовал свое „Описание удивительной таблицы логарифмов“ (1614), содержавшее определение Неперовых логарифмов, их свойства и таблицы логарифмов синусов и косинусов от 0 до 90 градусов с интервалом в 1 минуту, а также разности этих логарифмов, дающие логарифмы тангенсов. Теоретические выводы и объяснения способа вычисления таблицы он изложил в другом труде, подготовленном, вероятно, до „Описания“, но изданном посмертно, в „Построении удивительной таблицы логарифмов“ (1619). Упомянем, что в обоих сочинениях Непер рассматривает и некоторые вопросы тригонометрии. Особенно известны удобные для логарифмирования „аналогии“, т. е. пропорции Непера, применяемые при решении сферических треугольников по двум сторонам и углу между ними, а также по двум углам и прилежащей к ним стороне.

  109