ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Брак не по любви

Ну и имя у героини. Не могли придумать что нибудь поромантичнее >>>>>

Незабудка

Скучно, ой как скучно! Прочла до конца, но только ради того, чтобы понять, что же там случилось на горе, хоть и... >>>>>

Две розы

Какой замечательный роман о настоящей семье, дружбе и любви >>>>>

Сильнее смерти

Прочитала уже большинство романов Бекитт, которые здесь есть и опять, уже в который раз не разочаровалась... >>>>>

Фактор холода

Аптекарь, его сестра и её любовник. Та же книга. Класс! >>>>>




  128  

В XIX веке заметны достижения и в физиологии высшей нервной деятельности. Особенно в исследовании процессов обучения животных. В 30-х годах нашего столетия явлением стала теория физиологической активности Беркштейна, еще позже принцип функциональной системы Анохина».

Вместе с прогрессом происходит и сближение технических средств, используемых и в физиологии и в автоматике. Такое сближение сопровождается взаимным обменом принципами построения структурных схем, идеями моделирования, методами анализа и синтеза систем.

Подобную тенденцию одним из первых уловил русский философ Александр Александрович Богданов. «Мой исходный пункт, — писал ученый, — заключается в том, что структурные отношения могут быть обобщены до такой формальной чистоты схем, как в математике и отношениях величин, и на такой основе организационные задачи могут решаться способами, аналогичными математическим».

Таким образом, Богданов предвосхитил появление общей теории систем — одной из ключевых концепций кибернетики. Русский ученый сумел обосновать и принцип обратной связи, назвав его «механизмом двойного взаимного регулирования».

Позднее, в 1936 году английский математик А. Тьюринг опубликовал работу, описывающую абстрактную вычислительную машину. Некоторые положения его труда во многом предвосхитили различные проблемы кибернетики.

Однако решающее слово в рождении новой науки сказал крупный американский математик Винер.

Норберт Винер (1894–1964) родился в городе Колумбия штата Миссури. Читать он научился с четырех лет, а в шесть уже читал Дарвина и Данте. В девять лет он поступил в среднюю школу, в которой начинали учиться дети с 15–16 лет, закончив предварительно восьмилетку. Среднюю школу он окончил, когда ему исполнилось одиннадцать. Сразу же мальчик поступил в высшее учебное заведение, Тафте-колледж. После окончания его, в возрасте 14 лет, получил степень бакалавра искусств. Затем учился в Гарвардском и Корнельском университетах, в 17 лет в Гарварде стал магистром искусств, в 18 — доктором философии по специальности «математическая логика».

Гарвардский университет выделил Винеру стипендию для учебы в Кембриджском (Англия) и Геттингенском (Германия) университетах. Перед Первой мировой войной, весной 1914 года Винер переехал в Геттинген, где в университете учился у Э.Ландау и великого Д.Гильберта.

В начале войны Винер вернулся в США, год провел в Кембридже, но в сложившихся условиях научных результатов добиться не мог. В Колумбийском университете он стал заниматься топологией, но начатое до конца не довел. В 1915–1916 учебном году Винер в должности ассистента преподавал математику в Гарвардском университете.

Следующий учебный год Винер работал по найму в университете штата Мэн. После вступления США в войну он работал на заводе «Дженерал электрик», откуда перешел в редакцию Американской энциклопедии в Олбани. Затем Норберт какое-то время участвовал в составлении таблиц артиллерийских стрельб на полигоне, где его даже зачислили в армию, но вскоре из-за близорукости уволили. Потом он перебивался статьями в газеты, написал две работы по алгебре, вслед за опубликованием которых получил рекомендацию профессора математики В.Ф. Осгуда и в 1919 году поступил на должность ассистента кафедры математики Массачусетсского технологического института (МТИ). Так началась его служба в этом институте, продолжавшаяся всю жизнь.

Здесь Винер ознакомился с содержанием статистической механики У. Гиббса. Ему удалось связать основные положения ее с лебеговским интегрированием при изучении броуновского движения и написать несколько статей. Такой же подход оказался возможным в установлении сущности дробового эффекта в связи с прохождением электрического тока по проводам или через электронные лампы.

Возвратившись в США, Винер усиленно занимается наукой. В 1920–1925 годах он решает физические и технические задачи с помощью абстрактной математики и находит новые закономерности в теории броуновского движения, теории потенциала, гармоническом анализе.

В 1922, 1924— и 1925 годах Винер побывал в Европе у знакомых и родственников семьи. В 1925 году он выступил в Геттингене с сообщением о своих работах по обобщенному гармоническому анализу, заинтересовавшим Гильберта, Куранта и Борна. Впоследствии Винер понял, что его результаты в некоторой степени связаны с развивавшейся в то время квантовой теорией.

  128