ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Обрученная во сне

очень нудно >>>>>

Королевство грез

Очень скучно >>>>>

Влюбленная вдова

Где-то на 15 странице поняла, что это полная хрень, но, с упорством мазохостки продолжала читать "это" аж до 94... >>>>>

Любовная терапия

Не дочитала.... все ждала когда что то начнётся... не понравилось >>>>>

Раз и навсегда

Не понравился. Банально, предсказуемо, просто неинтересно читать - нет изюминки. Не понимаю восторженных отзывов... >>>>>




  45  

Он пытался все время держаться за нос, но выпустил кончик носа до того, как достиг конца склона, и вернулся в трехмерное пространство, прервав своим появлением выступление Долорес.

Так ли было на самом деле, не знаю. Во всяком случае, таким представлялся ход событий Сляпенарскому.

Несколько недель он пробыл в госпитале, запретив пускать к себе посетителей, и я увидел его только в день выписки, когда проводил его на вокзал. Сляпенарский уехал поездом в Нью-Йорк, и с тех пор я его не видел. Через несколько месяцев он скончался от сердечного приступа. Профессор Симпсон вступил в переписку с вдовой профессора Сляпенарского в надежде разыскать хотя бы черновики работ своего покойного коллеги по теории нульсторонних поверхностей.

Сумеют ли топологи разобраться в черновиках Сляпенарского (разумеется, если их удастся найти), покажет будущее. Мы извели массу бумаги, но пока что нам удавалось построить только обычные двусторонние и односторонние поверхности. Хотя я помогал Сляпенарскому «складываться» в нульстороннюю поверхность, чрезмерное волнение стерло из моей памяти все детали.

Но я никогда не забуду замечание, которое обронил великий тополог в тот памятный вечер перед моим уходом.

— Счастье, — сказал он, — что Симпсон и я успели перед возвращением освободить правую руку.

— А что могло бы случиться? — спросил я недоумевающе.

Сляпенарский поежился.

— Мы бы вывернулись наизнанку, — сказал он.

Мартин Гарднер

ОСТРОВ ПЯТИ КРАСОК

В Монровии, столице Либерии, есть только один магазин москательных товаров. Когда я сказал темнокожему клерку, сколько галлонов краски мне нужно, он поднял в удивлении кустистые брови и присвистнул:

— Не иначе, как вы собрались выкрасить гору, мистер!

— Нет, — заверил я его, — не гору, всего лишь остров.

Клерк улыбнулся. Он думал, что я шучу, но я действительно собирался выкрасить целый остров в пять цветов: красный, синий, зеленый, желтый и пурпурный.

Для чего мне это понадобилось? Чтобы ответить на этот вопрос, мне придется вернуться на несколько лет назад и объяснить, почему я заинтересовался проблемой «четырех красок» — знаменитой, тогда еще не решенной проблемой топологии. В 1947 г. профессор Венского университета Станислав Сляпенарский прочитал в Чикагском университете цикл лекций по топологии и теории относительности. Я в то время был преподавателем математического факультета Чикагского университета (теперь я уже доцент). Мы подружились, и мне выпала честь представить его членам общества «Мебиус» в тот вечер, когда он прочитал свою сенсационную лекцию о «нульсторонних поверхностях». Читатели, следившие за научными достижениями Сляпенарского, должно быть, помнят, что он вскоре после этого скончался от сердечного приступа в начале 1948 г.

Проблема четырех красок была темой моей докторской диссертации. Еще до визита Сляпенарского в США мы обменялись с ним несколькими письмами, обсуждая различные аспекты этой трудной проблемы. Гипотеза о четырех красках утверждает, что для правильной раскраски любой карты (при которой любые две сопредельные страны, имеющие общий отрезок границы, будут выкрашены в различные цвета, и две страны не считаются сопредельными, если их границы имеют лишь одну общую точку) достаточно четырех красок. Страны на карте могут быть любых размеров и самых причудливых очертаний. Число их также может быть произвольным. Гипотеза четырех красок была впервые высказана одним из создателей топологии, Мебиусом, в 1860 г., и, хотя над решением ее бились лучшие умы в математике, ее не удавалось ни доказать, ни опровергнуть.[3]

По странному стечению обстоятельств проблема четырех красок была решена для всех поверхностей, кроме сферы и плоскости. В 1890 г. Р. Дж. Хивуд доказал, что для раскраски поверхности тора (поверхности бублика) необходимо и достаточно семи красок, а в 1934 г. Филип Франклин доказал, что шести красок достаточно для раскраски карт на односторонних поверхностях типа листа Мебиуса и бутылки Клейна.

Открытие Сляпенарским нульсторонних поверхностей возымело далеко идущие последствия для изучения свойств бутылки Клейна и произвело подлинный переворот в исследованиях по проблеме четырех красок. Как сейчас вижу мощную фигуру Сляпенарского, который, улыбаясь и теребя бородку, говорит: «Дорогой Мартин, если история топологии чему-нибудь и учит, то только тому, что следует ожидать самых неожиданных и удивительных связей между, казалось бы, совершенно не связанными между собой топологическими проблемами».


  45